Abstract

We consider a nominally uniform flow over a semi-infinite flat plate. Our analysis shows how a small streamwise disturbance in the otherwise uniform flow ahead of the plate is amplified by leading-edge bluntness effects and eventually leads to a small-amplitude but nonlinear spanwise motion far downstream from the leading edge of the plate. This spanwise motion is then imposed on the viscous boundary-layer flow at the surface of the plate – causing an order-one change in its profile shape. This ultimately reduces the wall shear stress to zero – causing the boundary layer to undergo a localized separation, which may be characterized as a kind of bursting phenomenon that could be related to the turbulent bursts observed in some flat-plate boundary-layer experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call