Abstract

We have closely examined the emission spectrum at the heavy-hole exciton resonance in a high-quality GaAs multi-quantum well sample using picosecond excitation-correlation photoluminescence (ECPL) spectroscopy. Dynamics of the ECPL signal at low and high energy sides of the excitonic photoluminescence (PL) peak show complementary behavior. The ECPL signal is positive (negative) below (above) the PL peak and it changes sign within a narrow band of energy lying between the excitonic absorption and emission peaks. The energy at which this sign change takes place is interpreted as the excitonic mobility edge as it separates localized excitons in quantum dot-like states from mobile excitons in quantum well-like states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.