Abstract

Increasing the resolution of population studies in plant biology is one of the leading frontiers for omics sciences. One of the most pervasive challenges in molecular phylogenetics is the incongruence between phylogenies obtained using different data sets such as individual genes [like ribulose bisphosphate carboxylase large chain (rbcL) and maturase K (matK)] and intergenic spacers (IGS) [like nuclear ribosomal internal transcribed spacer 1 (nrITS 1) and 2 (nrITS 2), and chloroplast IGS between transfer RNA for leucine and phenylalanine (cp trnL-trnF IGS)]. To solve this challenge, we have screened the four well-established candidate gene sequences (i.e., rbcL, matK, trnL-trnF IGS, and 18S-ITS1-5.8S-ITS2-28S nrDNA) of 65 Indian orchid species. We also have included 31 different species of Dendrobium to identify the suitable locus for resolving the phylogeny-related problem below the taxonomic rank of genus. The Consortium for the Barcode of Life has recommended the locus rbcL and matK for barcoding of all land plants, including orchids. However, in this study, matK and rbcL (species resolving capacity 52% and 48%, respectively) were found to work above the taxonomic limit of genus, and thus cannot be considered a suitable tool to resolve closely related species of Dendrobium, whereas, we found that the locus 18S-ITS1-5.8S-ITS2-28S nrDNA is the best choice with the highest species resolving ability (95.23%) and the highest mean Kimura 2-parameter distance (254 for intergeneric and 144 for intrageneric) for phylogeny construction, and thus have been taken as the most promising single-locus barcode for orchids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call