Abstract

To distinguish between corneal ectasia and contact lens-related warpage by characteristic patterns on corneal topography and optical coherence tomography (OCT) epithelial thickness maps. Casey Eye Institute, Portland, Oregon, USA. Prospective and retrospective case series. Axial and mean power maps were obtained on corneal topography systems. Epithelial thickness maps were generated using RTVue OCT. A sector divider was applied to all maps. The locations of the minimum epithelial thickness, maximum epithelial thickness, maximum axial power, and maximum mean power were determined based on sector averages. Agreement was defined as the extremums occurring in the same or adjacent sectors. Twenty-one eyes with keratoconus, 6 eyes with forme fruste keratoconus (better eye of asymmetric keratoconus), and 15 eyes with contact lens-related warpage were identified. The keratoconus and forme fruste keratoconus eyes had coincident topographic steepening with epithelial thinning. The locations of minimum epithelial thickness and maximum axial power agreed in 90% of the keratoconic eyes, while the minimum epithelial thickness and maximum mean power agreed in 95% of them. Conversely, the warpage eyes had coincident topographic steepening with epithelial thickening and normal pachymetry maps. The locations of maximum epithelial thickness and maximum axial power agreed in 93% of the warpage eyes, while the maximum epithelial thickness and maximum mean power agreed in all warpage eyes. Results show that epithelial thickness maps and corneal topographic maps are powerful synergistic tools in evaluating eyes with abnormal topography and can help differentiate between keratoconus and nonectatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.