Abstract
Consider an ensemble of pure quantum states |\psi_j>, j=1,...,n taken with prior probabilities p_j respectively. We show that it is possible to increase all of the pairwise overlaps |<\psi_i|\psi_j>| i.e. make each constituent pair of the states more parallel (while keeping the prior probabilities the same), in such a way that the von Neumann entropy S is increased, and dually, make all pairs more orthogonal while decreasing S. We show that this phenomenon cannot occur for ensembles in two dimensions but that it is a feature of almost all ensembles of three states in three dimensions. It is known that the von Neumann entropy characterises the classical and quantum information capacities of the ensemble and we argue that information capacity in turn, is a manifestation of the distinguishability of the signal states. Hence our result shows that the notion of distinguishability within an ensemble is a global property that cannot be reduced to considering distinguishability of each constituent pair of states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.