Abstract

SummaryPrecipitation may increase or decrease by different intensities, but the pattern and mechanism of soil microbial community assembly under various precipitation changes remain relatively underexplored. Here, although ±30% precipitation caused a small decrease (∼19%) in the within-treatment taxonomic compositional dissimilarity through the deterministic competitive exclusion process in a steppe ecosystem, ±60% precipitation caused a large increase (∼35%) in the dissimilarity through the stochastic ecological drift process (random birth/death), which was in contrast with the traditional thought that increasing the magnitude of environmental changes (e.g., from +30% to +60%) would elevate the importance of deterministic relative to stochastic processes. The increased taxonomic dissimilarity/stochasticity under ±60% precipitation translated into functional dissimilarity/stochasticity at the gene, protein, and enzyme levels. Overall, our results revealed the distinctive pattern and mechanism of precipitation changes affecting soil microbial community assembly and demonstrated the need to integrate microbial taxonomic information to better predict their functional responses to precipitation changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.