Abstract

Soil microbes act as “players” in regulating biogeochemical cycles, whereas environmental heterogeneity drives microbial community assembly patterns and is influenced by stochastic and deterministic ecological processes. Currently, the limited understanding of soil microbial community assembly patterns and interactions under temperate forest stand differences pose a challenge in studying the soil microbial involvement during the succession from coniferous to broad-leaved forests. This study investigated the changes in soil bacterial and fungal community diversity and community structure at the regional scale and identified the pathways influencing soil microbial assembly patterns and their interactions. The results showed that broad-leaved forest cover in temperate forests significantly increased soil pH, and effectively increased soil water content, total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents. Both soil bacterial and fungal alpha diversity indices were correlated with soil physicochemical properties, especially in broad-leaved forest. The bacterial and fungal community composition of coniferous forest was dominated by deterministic process (bacteria: 69.4%; fungi: 88.9%), while the bacterial community composition of broad-leaved forest was dominated by stochastic process (77.8%) and the fungal community composition was dominated by deterministic process (52.8%). Proteobacteria, Acidobacteriota, Actinobacteriota, and Verrucomicrobiota were the dominant phyla of soil bacterial communities in temperate forests. Whereas Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota were the dominant phyla of soil fungal communities in temperate forests. Most members of dominant phylum were regulated by soil physical and chemical properties. In addition, the succession from temperate coniferous forest to broad-leaved forest was conducive to maintaining the complex network of soil bacteria and fungi, and the top 20 degree of the major taxa in the network reflected the positive response of microbial interactions to the changes of soil nutrients during forest succession. This study not only shows the mechanism by which species differences in temperate forests of northern China affect soil microbial community assembly processes, but also further emphasizes the importance of the soil microbiome as a key ecosystem factor through co-occurrence network analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call