Abstract
Temporal order judgment of two successive tactile stimuli delivered to our hands is often inverted when we cross our hands. The present study aimed to identify time-frequency profiles of the interactions across the cortical network associated with the crossed-hand tactile temporal order judgment task using magnetoencephalography. We found that the interactions across the cortical network were channeled to a low-frequency band (5-10Hz) when the hands were uncrossed. However, the interactions became activated in a higher band (12-18Hz) when the hands were crossed. The participants with fewer inverted judgments relied mainly on the higher band, whereas those with more frequent inverted judgments (reversers) utilized both. Moreover, reversers showed greater cortical interactions in the higher band when their judgment was correct compared to when it was inverted. Overall, the results show that the cortical network communicates in two distinctive frequency modes during the crossed-hand tactile temporal order judgment task. A default mode of communications in the low-frequency band encourages inverted judgments, and correct judgment is robustly achieved by recruiting the high-frequency mode.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have