Abstract

This study discusses the influence of the composition of a ternary gas mixture on the possibility of occurrence of convective instability under isothermal conditions due to the difference in the diffusion abilities of the components. A numerical study was carried out to study the change in “diffusion–concentration gravitational convection” modes in an isothermal three-component gas mixture He + CO2 − N2. The mixing process in the system under study was modeled at different initial carbon dioxide contents. To carry out a numerical experiment, a mathematical algorithm based on the D2Q9 model of lattice Boltzmann equations was used for modeling the flow of gases. We show that the model presented in the paper allows one to study the occurrence of convective structures at different heavy component contents (carbon dioxide). It has been established that in the system under study, the instability of the mechanical equilibrium occurs when the content of carbon dioxide in the mixture is more than 0.3 mole fractions. The characteristic times for the onset of convective instability and the subsequent creation of structural formations, the values of which depend on the initial content of carbon dioxide in the mixture, have been determined. Distributions of concentration, pressure and kinetic energy that allow one to specify the types of mixing and explain the occurrence of convection for a situation where, at the initial moment of time, the density of the gas mixture in the upper part of the diffusion channel is less than in the lower one, were obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.