Abstract

Electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) are two similar quantum coherent phenomena but have different mechanisms and applications. Akaike information criteria (AIC), an objective method to discriminate EIT and ATS from an experimental viewpoint, has been employed in a variety of systems. Here we use AIC method to quantitively discriminate a series of spectra of cold atoms in a Rydberg-involved upper-driving ladder-type. The derived weights of EIT and ATS reflect that our spectra change from EIT-ATS intermediate region to ATS-dominated region along Rabi frequency of coupling field increases. We find that there are two factors affecting EIT-ATS weights in a Rydberg-involved three-level system: dephasing rate, induced by the interactions among Rydberg atoms, makes the EIT-ATS crossover move to the direction of low Rabi frequency of coupling field and the experimental noise makes the difference between EIT and ATS weights reduce at elsewhere. Our investigation could provide a meaningful reference for the observations and applications of Rydberg-involved quantum coherent spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call