Abstract

There is limited data on the mechanisms of aspirin desensitization in patients with nonsteroidal anti-inflammatory drug (NSAID)-induced urticaria/angioedema (NIUA). We sought to characterize the transcriptomic and metabolomic profiles of patients with NIUA undergoing aspirin desensitization. PBMCs and plasma were separated from the blood of patients with NIUA undergoing aspirin desensitization for coronary artery disease and NSAID-tolerant controls. RNA was isolated from PBMCs and subjected to messenger RNA (mRNA)- and long noncoding RNA (lncRNA)-sequencing. Plasma samples were analyzed using LC-MS/MS for metabolite shifts using a semitargeted metabolomics panel. Eleven patients with NIUA and 10 healthy controls were recruited. The mRNA gene profiles of predesensitization versus postdesensitization and healthy control versus postdesensitization did not differ significantly. However, we identified 739 mRNAs and 888 lncRNAs as differentially expressed from preaspirin desensitization patients and controls. A12-mRNA gene signature was trained using a machine learning algorithm to distinguish between controls, postdose, and predose samples. Ingenuity Pathway Analysis identified 5 canonical pathways that were significantly enriched in preaspirin desensitization samples. IL-22 was the most upregulated pathway. To investigate the potential regulatory roles of the differentially expressed lncRNA on the mRNAs, 9lncRNAs and 12 mRNAs showed significantly correlated expression patterns in the IL-22 pathway. To validate the transcriptomics data, IL-22 was measured in the plasma samples of the subjects using ELISA. IL-22 was significantly higher in preaspirin desensitization patients compared with controls. In parallel, metabolomic analysis revealed stark differences in plasma profiles of preaspirin desensitization patients and healthy controls. In particular, 2-hydroxybenzoic acid (salicylic acid) was significantly lower in preaspirin desensitization patients compared with healthy controls. This is the first study to combine both transcriptomic and metabolomic approaches in patients with NIUA, which contributes to a deeper understanding about the pathogenesis of NIUA and may potentially pave the way toward a molecular diagnosis of NSAID hypersensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.