Abstract

Platelet activating factor (PAF) interacts with cell surface G protein-coupled receptors on leukocytes to induce degranulation, leukotriene C(4) (LTC(4)) generation, and chemokine CCL2 production. Using a basophilic leukemia RBL-2H3 cell line expressing wild-type PAF receptor (PAFR) and a phosphorylation-deficient mutant (mPAFR), we have previously demonstrated that receptor phosphorylation mediates desensitization of PAF-induced degranulation. Here, we sought to determine the role of receptor phosphorylation on PAF-induced LTC(4) generation and CCL2 production. We found that PAF caused a significantly enhanced LTC(4) generation in cells expressing mPAFR when compared with PAFR cells. In contrast, PAF-induced CCL2 production was greatly reduced in mPAFR cells. Pertussis toxin and U0126, which inhibit G(i) and p44/42 mitogen-activated protein kinase (ERK) activation, respectively, caused very little inhibition of PAF-induced CCL2 production (approximately 20% inhibition). In contrast, these inhibitors almost completely blocked both PAF-induced ERK phosphorylation and LTC(4) generation in PAFR cells. However, in mPAFR cells pertussis toxin only partially inhibited PAF-induced ERK phosphorylation. A Ca(2+)/calmodulin inhibitor had no effect on PAF-induced ERK phosphorylation in PAFR cells but completely blocked the response in mPAFR cells. These data demonstrate that receptor phosphorylation, which serves to desensitize PAF-induced LTC(4) generation, is required for chemokine CCL2 production. They also indicate a previously unrecognized selectivity in G protein usage and ERK activation for PAF-induced responses. Whereas PAF-induced CCL2 production is, in large part, mediated independently of G(i) activation or ERK phosphorylation, LTC(4) generation requires ERK phosphorylation, which is mediated by different G proteins depending on the phosphorylation status of the receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.