Abstract

There is convincing evidence that mitogen-activated protein kinase (MAPK) activation is coupled to both receptor tyrosine kinase and G protein-coupled receptors. The presence of the epidermal growth factor (EGF) receptor and the GnRH receptor on the surface of GGH(3)1' cells makes this cell line a good model for the assessment of MAPK activation by receptor tyrosine kinases and G protein-coupled receptors. In this study, to assess the activated and total (i.e. activated plus inactivated) MAPK, the phosphorylation state of p44 and p42 MAPKs was examined using antisera that distinguish phospho-p44/42 MAPK (Thr202/Tyr204) from p44/42 MAPK (phosphorylation state independent). The data show that both EGF (200 ng/ml) and Buserelin (a GnRH agonist; 10 ng/ml) provoke rapid activation of MAPK (within 5 and 15 min, respectively) after binding to their receptors. The role of protein kinase A (PKA) and protein kinase C (PKC) signal transduction pathways in mediating MAPK activation was also assessed. Both phorbol ester (phorbol 12-myristate 13-acetate; 10 ng/ml) and (Bu)2cAMP (1 mM) trigger the phosphorylation of MAPK, suggesting potential roles for PKC and PKA signaling events in MAPK activation in GGH(3)1' cells. Treatment of PKC-depleted cells with Buserelin activated MAPK, suggesting involvement of PKC-independent signal transduction pathways in MAPK activation in response to GnRH. Similarly, treatment of PKC-depleted cells with forskolin (50 microM) or cholera toxin (100 ng/ml) stimulated MAPK activation, whereas pertussis toxin (100 ng/ml) had no measurable effect. To further assess the role of PKA in response to EGF and Buserelin, cells were treated with EGF (200 ng/ml) for 3 min or with Buserelin (10 ng/ml) for 10 min after pretreatment with 3-isobutyl-1-methylxanthine (0.5 mM), forskolin (50 microM), or (Bu)2cAMP (1 mM) for 15 min. The results show that MAPK can be activated in a PKA-dependent manner in GGH(3)1' cells. Consistent with previous reports, the current data support the view that MAPK activation can be achieved via both PKC- and PKA-dependent signaling pathways triggered by the GnRH receptor that couples to G(q/11) and Gs alpha-subunit proteins. In contrast, G(i/o)alpha does not appear to participate in MAPK activation in GGH(3)1' cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call