Abstract

AimsTo investigate the role and underlying mechanism of 4E-BP1 and S6K1 in regulating autophagy and hepatitis B virus (HBV) replication. Main methodsThe mRNA relative expression of HBx and its DNA level were detected by real-time PCR. The relative levels of hepatitis B surface antigen (HBsAg) were measured by enzyme-linked immunosorbent assay (ELISA). HBx DNA level of HepG2 cells transfected with pcDNA3.1(+)-HBV1.3 plasmids were detected by Southern blot. Moreover, we determined autophagy through electron microscopy, confocal microscopy and Western blot. Key findingsRapamycin promoted autophagy and the X protein synthesis concomitantly with elevation in Akt phosphorylation and Beclin1 expression. Either Beclin1 or Akt depletion suppresses the Rapa-enhanced HBV replication, whereas mTOR silencing inhibited HBV replication concurring with a decreased in both S6K1 and 4E-BP1 phosphorylation. Unexpectedly, Akt inhibitor suppressed Rapa-dependent autophagic flux and increased the level of p62/SQSTM1. While S6K1 ablation impaired autophagy and decreased X protein expression, 4E-BP1 silencing slightly influenced autophagy and increased X protein level. SignificanceThe underlying mechanism of 4E-BP1 and S6K1, two main downstream effectors of mTOR, in mediating HBV replication and HBV-induced autophagy remains largely unknown. Here, we propose that Akt is required for both HBV replication and Rapa-induced autophagy, and 4E-BP1 and S6K1 play a distinct role in the virus replication and autophagic process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call