Abstract
NF-kappaB is a critical regulator of genes involved in inflammation. Gastric epithelial cells and macrophages are considered the main sources of pro-inflammatory cytokines. We investigated NF-kappaB activation by Helicobacter pylori in MKN45 gastric epithelial cells and THP-1 monocytic cells. Although, cag pathogenicity island (PAI)-positive H. pylori (wild type) activated NF-kappaB in both cells, isogenic mutant of cagE (DeltacagE) activated it only in THP-1 cells. Supernatant from the wild type culture could activate NF-kappaB in THP-1 cells but not in MKN45 cells. High density cDNA array analysis revealed that mRNA expression of NF-kappaB-regulated genes such as interleukin (IL)-8, tumor necrosis factor-alpha (TNFalpha), and IL-1beta was significantly up-regulated by the wild type in both cells, whereas it was up-regulated by DeltacagE only in THP-1 cells. Experiments using CD14-neutralizing antibody and IL-1 receptor-associated kinase (IRAK) assay showed that both wild type and DeltacagE H. pylori activated NF-kappaB through CD14 and IRAK in THP-1 cells but not in MKN45 cells. Macrophages from C3H/HeJ mice carrying point mutation in the Toll-like receptor 4 (TLR4) gene showed decreased NF-kappaB activation and TNFalpha secretion compared with C3H/HeN mouse macrophage when treated with H. pylori. In conclusion, H. pylori-induced NF-kappaB activation in epithelial cells is dependent on cag PAI and contact but does not involve CD14 and IRAK, whereas in macrophage/monocytic cells it is independent of cag PAI or contact but involves CD14 and TLR4.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have