Abstract
Aggregation and deposition of amyloid beta-protein 1–42 (Aβ42) in the brain, primarily owing to hydrophobic interactions between Aβ42 chains, is a common pathology in all forms of Alzheimer's disease (AD). Hydrophilic oligosaccharides are widely present in the extracellular matrix and on the cytoplasmic membrane. To determine if oligosaccharides bind to Aβ42 or its aggregates and consequently affect their aggregation and cellular function, this study examined the interaction of typical functional oligosaccharides with Aβ42 or its aggregates. Isomaltooligosaccharides (IMOs), particularly isomaltotriose, panose, and isomaltotetraose, functioned as molecular chaperones for Aβ42 by binding directly to Aβ42, preserving Aβ42's active conformation and cytotrophic activity. Oral IMOs reduced total plasma Aβ level and indirectly caused a slight reduction in the load of Aβ42 spots/plaques in the brain of AD model mice (male). Another branched oligosaccharide, bianntennary core pentasaccharide (BCP), had a relatively high binding specificity for Aβ42 oligomers (Aβ42O) and acted as an antagonistic binding partner for Aβ42O. Free BCP effectively blocked/prevented further assembly of Aβ42O and their toxicity to neural and vascular endothelial cell lines. Since BCP is also a signaling component of membrane targets (glycolipids, glycoproteins or receptors), it seemed that BCP had two opposing effects on the binding of Aβ42O to target cells. This study's findings suggest that these branched oligosaccharides may be potential candidates for blocking or preventing Aβ42 aggregation and Aβ42O cytotoxicity/neurotoxicity, respectively, and that IMO-like or free BCP-like oligosaccharide deficiencies in the brain may be one of the underlying mechanisms for Aβ42 aggregation and Aβ42O cytotoxicity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have