Abstract

Molecular dynamics simulations were used to study the structural and dynamical properties of a water-like core-softened fluid under confinement when the confining media is rigid or fluctuating. The fluid is modeled using a two-length scale potential that reproduces, in the bulk, the anomalous behavior observed in water. We perform simulations in the NVT ensemble for fixed flat walls and in the NpT ensemble using a fluctuating wall control of pressure to study how the fluid behavior is affected by fixed and non-fixed walls. Our results indicate that the dynamical and structural properties of the fluid are strongly affected by the wall mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.