Abstract

In wheat, little is known about disease resistance inducers and, more specifically, about the biological activities from those derived from endogenous elicitors, such as oligogalacturonides (OGAs). Therefore, we tested the ability of two fractions of OGAs, with polymerization degrees (DPs) of 2-25, to induce resistance to Blumeria graminis f. sp. tritici and defense responses in wheat. One fraction was unacetylated (OGAs-Ac) whereas the second one was 30% chemically acetylated (OGAs+Ac). Infection level was reduced to 57 and 58% relative to controls when OGAs-Ac and OGAs+Ac, respectively, were sprayed 48 h before inoculation. Activities of various defense-related enzymes were then assayed in noninoculated wheat leaves infiltrated with OGAs. Oxalate oxidase, peroxidase, and lipoxygenase were responsive to both OGAs-Ac and OGAs+Ac, which suggests involvement of reactive oxygen species and oxilipins in OGAs-mediated responses in wheat. In inoculated leaves, both fractions induced a similar increase in H₂O₂ accumulation at the site of fungal penetration. However, only OGAs+Ac led to an increase in papilla-associated fluorescence and to a reduction of formed fungal haustoria. Our work provides the first evidence for elicitation and protection effects of preventive treatments with OGAs in wheat and for new properties of acetylated OGAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.