Abstract
Contrast agents are used in approximately 40% of all magnetic resonance imaging (MRI) procedures to improve the quality of the images based on the distribution and dynamic clearance of the agent. To date, all clinically approved contrast agents are Gd(III) coordination complexes that serve to shorten the longitudinal (T1) and transverse (T2) proton relaxation times of water. Recent interest in replacing Gd with biologically relevant metal ions such as Mn or Fe has led to increased interest in the aqueous coordination chemistry of their complexes. In this Account, we focus on high-spin Fe(III) complexes that have been recently reported as MRI contrast agents or probes in our laboratory.The highly Lewis acidic Fe(III) center has distinct coordination chemistry in aqueous solutions, facilitating alternative strategies in the design of MRI probes. To illustrate this, we describe different classes of Fe(III) MRI probes with a focus on macrocyclic complexes and multinuclear complexes such as self-assembled metal organic polyhedra (MOP). Our initial efforts focused on macrocyclic complexes of Fe(III) in order to tune spin and oxidation states with the goal of stabilizing high-spin Fe(III) in reducing biological environments. Our probes feature six-coordinate Fe(III) complexes of 1,4,7-triazacyclononane with hydroxypropyl, phosphonate, or carboxylate pendant groups to produce Fe(III) complexes that shorten proton T1 times predominantly from second-sphere or outer-sphere interactions at neutral pH. Analogues with pentadentate macrocyclic ligands have an inner-sphere water that does not exchange rapidly on the NMR time scale, yet these complexes are effective relaxation agents. Fe(III) macrocyclic complexes in this class can be modified to modulate their biodistribution and pharmacokinetic clearance in mice. The goal of these studies is for the Fe(III) agents to clear as extracellular fluid agents and produce profiles similar to those of Gd agents. Finally, studies of multimeric Fe(III) complexes are of interest to produce probes that give large proton relaxivity. In this approach the two Fe(III) centers are connected through aryl linkers as demonstrated for several macrocyclic complexes. Even more tightly connected Fe(III) centers are produced in a Fe(III) self-assembled cage with relaxivity of 21 mM-1 s-1 at 4.7 T, 37 °C in the presence of serum albumin to which it is tightly bound. This cage enhances contrast of the vasculature as a blood pool agent and accumulates in tumors. Finally, we present our perspectives on the further development of Fe(III) complexes for various applications in MRI.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have