Abstract

Chromosome segregation errors that cause oocyte aneuploidy increase in frequency with maternal age and are considered a major contributing factor of age-related fertility decline in females. Lagging anaphase chromosomes are a common age-associated phenomenon in oocytes, but whether anaphase laggards actually missegregate and cause aneuploidy is unclear. Here, we show that lagging chromosomes in mouse oocytes comprise two mechanistically distinct classes of chromosome motion that we refer to as "class-I" and "class-II" laggards. We use imaging approaches and mechanistic interventions to dissociate the two classes and find that whereas class-II laggards are largely benign, class-I laggards frequently directly lead to aneuploidy. Most notably, a controlled prolongation of meiosis I specifically lessens class-I lagging to prevent aneuploidy. Our data thus reveal lagging chromosomes to be a cause of age-related aneuploidy in mouse oocytes and suggest that manipulating the cell cycle could increase the yield of useful oocytes in some contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.