Abstract

Stochastic nature due to distance and energy fluctuations of single protein molecules involved in electron-transfer (ET) reactions is studied. Distance fluctuations have been assumed previously for causing the slow fluctuations in the ET rates between a donor-acceptor pair constrained to a native protein. Although the observed t(-1/2) power law can be derived using Langevin dynamics with a simple chain model, some discrepancies exist. The friction coefficient and the Rouse segment time constant deduced from experimental data are several orders of magnitude too large, even though the extracted force constant is reasonable. Therefore, questions are raised about the distance-fluctuation mechanism and the activationless ET hypothesis. As an alternative mechanism, we considered fluctuations in activation energy and analyzed the data from two different single protein experiments to determine spectral distribution of energy fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.