Abstract
The perception of distance in open fields was widely studied with static observers. However, it is a fact that we and the world around us are in continuous relative movement, and that our perceptual experience is shaped by the complex interactions between our senses and the perception of our self-motion. This poses interesting questions about how our nervous system integrates this multisensory information to resolve specific tasks of our daily life, for example, distance estimation. This study provides new evidence about how visual and motor self-motion information affects our perception of distance and a hypothesis about how these two sources of information can be integrated to calibrate the estimation of distance. This model accounts for the biases found when visual and proprioceptive information is inconsistent.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have