Abstract

We demonstrate the feasibility and practical limitations of using steady-state anisotropy to determine distances from fluorescence homotransfer in the context of a protein of known crystal structure. Eight double mutants of T4 lysozyme spanning the distance range between 20 Å and 50 Å were labeled with a methanethiosulfonate derivative of fluorescein. The measured distances in liquid solution are in agreement with those determined from dipolar coupling between spin labels in the frozen state. They can be interpreted in the context of the crystal structure after accounting for the probe linking arm. Overall, the results establish the necessary calibration for this spectroscopic ruler. The measurement of similar distance trends using independent probes sets the stage for the complementary use of homotransfer and dipolar coupling in the determination of static structures and detection of conformational changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.