Abstract

Long-range DNA charge transfer process has been investigated on 5′-G(A) n G 3-3′ sequences by varying the number of adenine bridging base pairs. The charge transfer mechanism was determined based on density matrix decomposition path integration and trajectory analysis. The density matrix decomposition path integral formalism provides relative contribution of possible CT mechanisms such as incoherent hopping, coherent through-bridge, and superexchange mechanism. Quantitative determination of the degree-of-coherence in terms of the coherence length is useful in specifying the through-bridge mechanism, since it indicates the subset of states which forms a coherent collective state. In addition, trajectory analysis was performed to provide detailed description of the coherence propagation between distant states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.