Abstract
Motor imagery (MI) based brain-computer interface systems (BCIs) are highly in need for a large number of real-time applications such as hands and touch-free text entry system, movement of a wheelchair, movement of a cursor, prosthetic arm movement, virtual reality systems, etc. In recent years, sparse representation-based classification (SRC) is a growing technique and has been a successful technique on classifying MI-based Electroencephalography (EEG) signals. To further boost the proficiency of SRC technique, in this paper, a weighted SRC (WSRC) has been proposed for classifying MI signals. In WSRC approach, a weighted dictionary has been constructed according to the dissimilarity information between a test data and training samples. Then for the given test data, the sparse coefficients are computed over the weighted dictionary using l0-minimization problem. The sparse solution obtained using WSRC gives discriminative information and as a consequence, WSRC proves to be superior for MI-based EEG classification. The experimental results substantiate that WSRC is more efficient and accurate than SRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.