Abstract
Face recognition using Sparse Representation based Classification (SRC) is a new hot technique in recent years. SRC can be regarded as a generalization of Nearest Neighbor and Nearest Feature Subspace. This paper first reviews the Nearest Feature Classifiers (NFCs), including Nearest Neighbor (NN), Nearest Feature Line (NFL), Nearest Feature Plane (NFP) and Nearest Feature Subspace (NFS), and formulates them as general optimization problems, which provides a new perspective for understanding NFCs and SRC. Then a locality Weighted Sparse Representation based Classification (WSRC) method is proposed. WSRC utilizes both data locality and linearity; it can be regarded as extensions of SRC, but the coding is local. Experimental results on the Extended Yale B, AR databases and several data sets from the UCI repository show that WSRC is more effective than SRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.