Abstract
A distance antimagic graph is a graph G admitting a bijection f:V(G)→{1,2,…,|V(G)|} such that for two distinct vertices x and y, ω(x)≠ω(y), where ω(x)=∑y∈N(x)f(y), for N(x) the open neighborhood of x. It was conjectured that a graph G is distance antimagic if and only if G contains no two vertices with the same open neighborhood. In this paper, we study several distance antimagic product graphs. The products under consideration are the three fundamental graph products (Cartesian, strong, direct), the lexicographic product, and the corona product. We investigate the consequence of the non-commutative (or sometimes called non-symmetric) property of the last two products to the antimagicness of the product graphs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have