Abstract
The concept of Pythagorean fuzzy sets is very much applicable in decision science because of its unique nature of indeterminacy. The main feature of Pythagorean fuzzy sets is that it is characterized by three parameters, namely, membership degree, non-membership degree, and indeterminate degree, in such a way that the sum of the square of each of the parameters is one. In this paper, we present axiomatic definitions of distance and similarity measures for Pythagorean fuzzy sets, taking into account the three parameters that describe the sets. Some distance and similarity measures in intuitionistic fuzzy sets, viz, Hamming, Euclidean, normalized Hamming, and normalized Euclidean distances, and similarities are extended to Pythagorean fuzzy set setting. However, it is discovered that Hamming and Euclidean distances and similarities fail the metric conditions in Pythagorean fuzzy set setting whenever the elements of the two Pythagorean fuzzy sets, whose distance and similarity are to be measured, are not equal. Finally, numerical examples are provided to illustrate the validity and applicability of the measures. These measures are suggestible to be resourceful in multicriteria decision-making problems (MCDMP) and multiattribute decision-making problems (MADMP), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.