Abstract

The beneficial effects of N-decanoyl-homoserine lactone (C10-HSL), one of the typical N-acyl-homoserine lactones on biological nitrogen removal (BNR) system to resist the acute exposure of zinc oxide nanoparticles (ZnO NPs) has attracted extensive attentions. Nevertheless, the potential impact of dissolved oxygen (DO) concentration on the regulatory capacity of C10-HSL in the BNR system has yet to be investigated. This study conducted a systematic investigation of the impact of DO concentration on the C10-HSL-regulated BNR system against short-term ZnO NP exposure. Based on the findings, sufficient DO played a crucial role to improve the BNR system's resistance capacity to ZnO NPs. Under the micro-aerobic condition (0.5 mg/L DO), the BNR system was more sensitive to ZnO NPs. The ZnO NPs induced increased intracellular reactive oxygen species (ROS) accumulation, reduced antioxidant enzyme activities, and decreased specific ammonia oxidation rates in the BNR system. Furthermore, the exogenous C10-HSL had a positive effect on the BNR system's resistance to ZnO NP-induced stress, primarily by decreasing ZnO NPs-induced ROS generation and improving ammonia monooxygenase activities, especially under low DO concentrations. The findings contributed to the theoretical foundation for regulation strategy development of wastewater treatment plants under NP shock threat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call