Abstract

Iron (Fe) is one of the main nutrients present in dissolved, suspended, and colloidal states in river water. Predicting the composition and size of dissolved Fe compounds is crucial for assessing water quality. In this stud, we used a combination of physical methods (filtration), chemical techniques (ion exchange chromatography), and thermodynamic modeling (Visual MINTEQ) to characterize dissolved Fe speciation in boreal organic-rich rivers across a sizable south–north transect. We chose contrasting rivers with a predominance of either allochthonous or autochthonous organic compounds. We found that the dissolved organic matter (DOM) in the studied rivers varies in molecular weights and the degree of humification. Regardless of the climate parameters of the river watershed, the dominant status of dissolved Fe during the summer low-water period was essentially colloidal and dominated by anionic complexes of the type [MeL]n−.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call