Abstract
This article aims to study the effect of the vertical rotation and magnetic field on the dissolution-driven convection in a saturated porous layer with a first-order chemical reaction. The system’s physical parameters depend on the Vadasz number, the Hartmann number, the Taylor number, and the Damkohler number. We analyze them in an in-depth manner. On the other hand, based on an artificial neural network (ANN) technique, the Levenberg–Marquardt backpropagation algorithm is adopted to predict the distribution of the critical Rayleigh number and for the linear stability analysis. The simulated critical Rayleigh numbers obtained by the numerical study and the predicted critical Rayleigh numbers by the ANN are compared and are in good agreement. The system becomes more stable by increasing the Damkohler and Taylor numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.