Abstract

ABSTRACT In this paper, the linear and nonlinear instability of magnetoconvection in a Darcy-Benard setup saturated by a Maxwell fluid with chemical reactions is studied. The governing non-dimension equations are solved using the normal modes, and we obtain the expressions for steady and oscillatory thermal Rayleigh numbers. The effects of different physical parameters such as the Damkohler number (), Hartmann number (), Solute Rayleigh number (), relaxation parameter (), Magnetic Prandtl number (), Lewis number () on stationary and oscillatory critical thermal Rayleigh numbers are presented and described. Enhancing the values of the Solute Rayleigh number and Lewis number makes the system unstable. Also, the Hartmann number and Damkohler number have a contrasting effect on stationary and oscillatory convection. Enhancing the value of the relaxation parameter makes the system more stable. In order to study heat transport by convection, the well-known equation, the Landau-Ginzburg equation, is derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call