Abstract

Ni60WC35 self-fluxing composite coating was fabricated by transverse-flow CO2 laser apparatus on 45 medium-carbon steel surfaces. The microstructure and phase transform behavior of WC reinforced particles under the laser cladding conditions was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS). The results show that laser scanning speed has a great important influence on the microstructure of Ni-based WC composite coating, WC particles has a transition to the Ni-based coating. The main feature of WC particle is its edge hard phase has transformed into needle phase, and the needle phase areas increase with the decrease of the laser scanning speed. Some WC particles turn into needle clusters structure, and then white block phase. In addition, WC particle has some microscopic defects, and the surface priority defect can be dissolved. When the pool temperature rises to 1250°C, WC decomposition reaction become W2C and C. The elements diffusion can promote the dissolution of WC particles when the pool temperature rises continuously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call