Abstract

Using first-principles calculations, we systematically study the dissociations of O2 molecules on different ultrathin Pb(111) films. According to our previous work revealing the molecular adsorption precursor states for O2, we further explore why there are two nearly degenerate adsorption states on Pb(111) ultrathin films, but no precursor adsorption states existing at all on Mg(0001) and Al(111) surfaces. The reason is concluded to be the different surface electronic structures. For the O2 dissociation, we consider both the reaction channels from gas-like and molecularly adsorbed O2 molecules. We find that the energy barrier for O2 dissociation from the molecular adsorption precursor states is always smaller than that from O2 gas. The most energetically favorable dissociation process is found to be the same on different Pb(111) films, and the energy barriers are found to be influenced by the quantum size effects of Pb(111) films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call