Abstract

The dissociation of molecular iodine in 40 MHz-RF discharge was studied experimentally. This generation of atomic iodine is aimed at use in oxygen-iodine lasers. The discharge was ignited in a mixture of I2 + buffer gas fast-flowing through the cylindrical chamber and the discharge products were injected into a supersonic flow of nitrogen. The atomic iodine number density was measured in a low-pressure cavity after mixing with nitrogen and the dissociation fraction was calculated related to the input I2 flow rate. The dissociation fraction of 46.2% was achieved at 0.22 mmol/s of I2 and 7 mmol/s of Ar and RF power of 500 W. Argon and helium were used as a buffer gas; discharge stability and dissociation efficiency were better with argon. At the I2 flow rate corresponding to the operation of a 1 kW chemical oxygen-iodine laser, the dissociation fraction was about 20%. The dissociation efficiency (the fraction of absorbed energy used for the dissociation) significantly decreased with increasing in the specific energy. At a reasonable I2 flow rate (0.32 mmol/s), the maximum achieved efficiency was 8.5% and the corresponding energy cost was 8.9 eV per dissociating of one I2 molecule. The input energy of more than 3 kJ per 1 mmol of I2 is needed for dissociating at least 50% of I2. The obtained dependencies on the gas flow rates infer a good chance for scaling-up of the tested RF discharge generator for the intended application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.