Abstract

Recent experimental data indicate that both neurotrophic factors (NTFs) and intracortical inhibitory circuitry are implicated in the development and plasticity of ocular dominance columns. We extend a neurotrophic model of developmental synaptic plasticity, which previously failed to account correctly for the differences between monocular deprivation and binocular deprivation, and show that the inclusion of lateral cortical inhibition is indeed necessary in understanding the effects of visual deprivation in the model. In particular, we argue that monocular deprivation causes a differential shift in the balance between inhibition and excitation in cortical columns, down-regulating NTFs in deprived-eye columns and up-regulating NTFs in undeprived-eye columns; during binocular deprivation, however, no such shift occurs. We thus postulate that the response to visual deprivation is at the level of the cortical circuit, while the mechanisms of afferent segregation are at the molecular or cellular level. Such a dissociation is supported by recent experimental work challenging the assumption that columnar organisation develops in an activity-dependent, competitive fashion. Our extended model also questions recent attempts to distinguish between heterosynaptic and homosynaptic models of synaptic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call