Abstract

We have studied quantum transport in graphene nanoribbon tunnel field-effect transistors. Unlike other studies on similar structures, we have included dissipative processes induced by inelastic electron-phonon scattering and edge roughness in the nanoribbon self-consistently within a non-equilibrium transport simulation. Our results show that the dissipative scattering imposes a limit to the minimum OFF current and a minimum subthreshold swing that can be obtained even for long channel lengths where direct source-drain tunneling is inhibited. The edge roughness, in the presence of dissipative scattering, somewhat surprisingly, shows a classical behavior where it mostly reduces the maximum ON current achievable in this structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call