Abstract

In this work, we report a parameterization procedure to compute the parameters of a hydrogel consisting of a hydrophilic polymer and a cross-linker. The system is parameterized so that coarse-grained dissipative particle dynamics (DPD) simulations can be performed. Proper computation of the simulation parameters is crucial in order to represent the inherent chemical nature of the hydrogel and to model the correct structure. The polymer is parameterized by considering different volumes for coarse-grained beads. Moreover, the hydrogen bond interactions should be represented and properly defined in the simulations. To that purpose, we use a recently introduced parameterization procedure that incorporates the attraction as a result of the hydrogen bond interactions between relevant beads. This paper serves as an example of how the realistic simulation parameters of a hydrophilic polymer can be straightforwardly computed by leading to a proper determination of the structure and properties. The computational background, the procedures and the results of the computation are reported and discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.