Abstract

We present a promising coarse-graining strategy for linking micro- and mesoscales of soft matter systems. The approach is based on effective pairwise interaction potentials obtained from detailed atomistic molecular dynamics (MD) simulations, which are then used in coarse-grained dissipative particle dynamics (DPD) simulations. Here, the effective potentials were obtained by applying the inverse Monte Carlo method [Lyubartsev and Laaksonen, Phys. Rev. E. 52, 3730 (1995)] on a chosen subset of degrees of freedom described in terms of radial distribution functions. In our first application of the method, the effective potentials were used in DPD simulations of aqueous NaCl solutions. With the same computational effort we were able to simulate systems of one order of magnitude larger than the MD simulations. The results from the MD and DPD simulations are in excellent agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call