Abstract

The meso-scale structure of symmetric diblock copolymer under cylindrical confinement is studied by dissipative particle dynamics (DPD). The simulation results show that coiled cylindrical geometry is favored in the presence of larger cylinder radius (R/L 0>∼1.5), and the number of rings depends on the cylinder radius. Because of the cylinder wall's selectivity, each block can form the central core, but only the preferential block forms the outmost layer. An approximately linear relationship exists between structure transition point, which is approximately in proportion to the 3/5 exponential of chain length of copolymer and number of layers. As the cylinder radius is decreased, a helical morphology is found. Lamellae parallel to the underside of the cylinder appear when the cylinder radius is made smaller (R/L 0 < ∼1.1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call