Abstract

In this work, we use a dissipative-particle-dynamics-based model for two-phase flows to simulate the breakup of liquid nanocylinders. Rayleigh's criterion for capillary breakup of inviscid liquid cylinders is shown to apply for the cases considered, in agreement with prior molecular dynamics (MD) simulations. Also, as shown previously through MD simulations, satellite drops are not observed, because of the dominant role played by thermal fluctuations which lead to a symmetric breakup of the neck joining the two main drops. The parameters varied in this study are the domain size, cylinder radius, thermal length scale, viscosity, and surface tension. The breakup time does not show the same scaling dependence as in capillary breakup of liquid cylinders at the macroscale. The time variation of the radius at the point of breakup agrees with prior theoretical predictions from expressions derived with the assumption that thermal fluctuations lead to breakup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call