Abstract

This paper is concerned with the problem of dissipative based adaptive reliable controller for a class of time delay systems subject to actuator failures and time-varying sampling with a known upper bound on the sampling intervals. By constructing a proper Lyapunov-Krasovskii functional which fully uses the available information about the actual sampling pattern and time delays, a new set of sufficient conditions is derived to obtain the required result. Then, a dissipative based adaptive sampled-data controller is designed such that the resulting closed-loop system is reliable in the sense that it is asymptotically stable and has the prescribed dissipative performance under given constraints. The existence condition of the desired dissipative based adaptive reliable sampled-data controller is obtained in terms of linear matrix inequalities. Further, the performance of the proposed controller is implemented on a liquid propellant rocket motor with a pressure feeding system model. The simulation results show the effectiveness and better performance of the proposed adaptive reliable sampled-data controller over conventional reliable controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.