Abstract

In this paper, the problem of reliable sampled-data control design with strict dissipativity for a class of linear continuous-time-delay systems against nonlinear actuator faults is studied. The main objective of this paper is to design a reliable sampled-data controller to ensure a strictly dissipative performance for the closed-loop system. Based on the linear matrix inequality (LMI) optimization approach and Wirtinger-based integral inequality, a new set of sufficient conditions is established for reliable dissipativity analysis of the considered system by assuming the mixed actuator fault matrix to be known. Then, the proposed result is extended to unknown fault matrix case. Also, the reliable sampled-data controller with strict dissipativity is designed by solving a convex optimization problem which can be easily solved by using standard numerical algorithms. Finally, a numerical example based on liquid propellant rocket motor with a pressure feeding system model is presented to illustrate the effectiveness of the developed control design technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.