Abstract

The dynamics of the deformations of a moving contact line is studied assuming two different dissipation mechanisms. It is shown that the characteristic relaxation time for a deformation of wavelength 2pi/|k| of a contact line moving with velocity v is given as tau(-1)(k)=c(v)|k|. The velocity dependence of c(v) is shown to depend drastically on the dissipation mechanism: we find c(v)=c(v=0)-2v for the case in which the dynamics is governed by microscopic jumps of single molecules at the tip (Blake mechanism), and c(v) approximately c(v=0)-4v when viscous hydrodynamic losses inside the moving liquid wedge dominate (de Gennes mechanism). We thus suggest that the debated dominant dissipation mechanism can be experimentally determined using relaxation measurements similar to the Ondarcuhu-Veyssie experiment [T. Ondarcuhu and M. Veyssie, Nature 352, 418 (1991)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.