Abstract

AbstractIn chemometrics, spectral data are typically represented by vectors of features in spite of the fact that they are usually plotted as functions of e.g. wavelengths and concentrations. In the representation, this functional information is thereby not reflected. Consequently, some characteristics of the data that can be essential for discrimination between samples of different classes or any other analysis are ignored. Examples are the continuity between measured points and the shape of curves. In the Functional Data Analysis (FDA) approach, the functional characteristics of spectra are taken into account by approximating the data by real valued functions, e.g. splines. Another solution is the Dissimilarity Representation (DR), in which classifiers are trained in a space built by dissimilarities with training examples or prototypes of each class. Functional information may be incorporated in the definition of the dissimilarity measure. In this paper we compare the feature‐based representation of chemical spectral data with three other representations: FDA, DR defined on raw data and DR defined on FDA descriptions. We analyze the classification results of these four representations for five data sets of different types, by using different classifiers. We demonstrate the importance of reflecting the functional characteristics of chemical spectral data in their representation, and we show when the presented approaches are more suitable. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.