Abstract

BackgroundA key problem in systems biology is estimating dynamical models of gene regulatory networks. Traditionally, this has been done using regression or other ad-hoc methods when the model is linear. More detailed, realistic modeling studies usually employ nonlinear dynamical models, which lead to computationally difficult parameter estimation problems. Functional data analysis methods, however, offer a means to simplify fitting by transforming the problem from one of matching modeled and observed dynamics to one of matching modeled and observed time derivatives–a regression problem, albeit a nonlinear one.ResultsWe formulate a functional data analysis approach for estimating the parameters of nonlinear dynamical models and evaluate this approach on data from two real systems, the gap gene system of Drosophila melanogaster and the synthetic IRMA network, which was created expressly as a test case for genetic network inference. We also evaluate the approach on simulated data sets generated by the GeneNetWeaver program, the basis for the annual DREAM reverse engineering challenge. We assess the accuracy with which the correct regulatory relationships within the networks are extracted, and consider alternative methods of regularization for the purpose of overfitting avoidance. We also show that the computational efficiency of the functional data analysis approach, and the decomposability of the resulting regression problem, allow us to explicitly enumerate and evaluate all possible regulator combinations for every gene. This gives deeper insight into the the relevance of different regulators or regulator combinations, and lets one check for alternative regulatory explanations.ConclusionsFunctional data analysis is a powerful approach for estimating detailed nonlinear models of gene expression dynamics, allowing efficient and accurate estimation of regulatory architecture.

Highlights

  • A key problem in systems biology is estimating dynamical models of gene regulatory networks

  • We focus on the problem of estimating differential equation models of gene network dynamics based on time series data

  • Our computational studies show that functional data analysis is a powerful approach to estimating nonlinear models of gene expression dynamics, and in particular, Figure 4 A visual depiction of the scores of different input combinations for the Hb gene in the gap gene network, omitting autoregulation

Read more

Summary

Introduction

A key problem in systems biology is estimating dynamical models of gene regulatory networks This has been done using regression or other ad-hoc methods when the model is linear. Realistic modeling studies usually employ nonlinear dynamical models, which lead to computationally difficult parameter estimation problems. The mathematical modeling of expression dynamics, combined with model parameter estimation, has been crucial to unraveling complex regulatory programs [1], to recognizing the robustness of the regulatory architecture of the segment polarity genes to variations in initial conditions and parametric variation [2,3,4], to studying mechanisms of robustness and evolution of the control of the cell cycle in yeast [5,6], to identifying surprising shifts in the expression domains of the gap genes and the regulatory interactions responsible [7,8], and to numerous other studies (e.g., [9,10,11,12,13,14,15,16])

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.