Abstract

Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane. It usually consists of a highly variable O-antigen, a less variable core oligosaccharide, and a highly conserved lipid moiety, designated lipid A. Several bacteria are capable of modifying their lipid A architecture in response to external stimuli. The outer membrane-localized lipid A 3-O-deacylase, encoded by the pagL gene of Salmonella enterica serovar Typhimurium, removes the fatty acyl chain from the 3 position of lipid A. Although a similar activity was reported in some other Gram-negative bacteria, the corresponding genes could not be identified. Here, we describe the presence of pagL homologs in a variety of Gram-negative bacteria. Although the overall sequence similarity is rather low, a conserved domain could be distinguished in the C-terminal region. The activity of the Pseudomonas aeruginosa and Bordetella bronchiseptica pagL homologs was confirmed upon expression in Escherichia coli, which resulted in the removal of an R-3-hydroxymyristoyl group from lipid A. Upon deacylation by PagL, E. coli lipid A underwent another modification, which was the result of the activity of the endogenous palmitoyl transferase PagP. Furthermore, we identified a conserved histidine-serine couple as active site residues, suggesting a catalytic mechanism similar to serine hydrolases. The biological function of PagL remains unclear. However, because PagL homologs were found in both pathogenic and nonpathogenic species, PagL-mediated deacylation of lipid A probably does not have a dedicated role in pathogenicity.

Highlights

  • Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane

  • The activity of the Pseudomonas aeruginosa and Bordetella bronchiseptica pagL homologs was confirmed upon expression in Escherichia coli, which resulted in the removal of an R-3-hydroxymyristoyl group from lipid A

  • In Escherichia coli, it consists of a 1,4Ј-bisphosphorylated ␤-1,6-linked glucosamine disaccharide, which is replaced by R-3-hydroxymyristic acid residues at positions 2, 3, 2Ј, and 3Ј via ester or amide linkage

Read more

Summary

Introduction

Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane. Homologs of the PhoP/PhoQ and PmrA/PmrB systems have been identified in other Gram-negative bacteria, including E. coli, Yersinia pestis, and Pseudomonas aeruginosa [13, 14]. Typhimurium, Bordetella pertussis, Bordetella bronchiseptica, Bordetella parapertussis, Legionella pneumophila, E. coli, and Y. pestis [19, 21] Another outer membrane-localized lipid A-modifying enzyme is the 3-O-deacylase PagL [22]. Some other Gram-negative bacteria, including P. aeruginosa [14], R. leguminosarum [23], Helicobacter pylori [24], and Porhyromonas gingivalis [25] contain 3-O-deacylated lipid A species, suggesting that these organisms contain enzymes with an activity similar to that of PagL. The limited sequence similarity among the various proteins was used to identify active site residues

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.