Abstract
BackgroundGrade 4 glioma is the most aggressive and currently incurable brain tumor with a median survival of one year in adult patients. Elucidating novel transcriptomic and epigenetic contributors to the molecular heterogeneity underlying its aggressiveness may lead to improved clinical outcomes.MethodsTo identify grade 4 glioma -associated 5-hydroxymethylcytosine (5hmC) and transcriptomic features as well as their cross-talks, genome-wide 5hmC and transcriptomic profiles of tissue samples from 61 patients with grade 4 gliomas and 9 normal controls were obtained for differential and co-regulation/co-modification analyses. Prognostic models on overall survival based on transcriptomic features and the 5hmC modifications summarized over genic regions (promoters, gene bodies) and brain-derived histone marks were developed using machine learning algorithms.ResultsDespite global reduction, the majority of differential 5hmC features showed higher modification levels in grade 4 gliomas as compared to normal controls. In addition, the bi-directional correlations between 5hmC modifications over promoter regions or gene bodies and gene expression were greatly disturbed in grade 4 gliomas regardless of IDH1 mutation status. Phenotype-associated co-regulated 5hmC–5hmC modules and 5hmC–mRNA modules not only are enriched with different molecular pathways that are indicative of the pathogenesis of grade 4 gliomas, but also are of prognostic significance comparable to IDH1 mutation status. Lastly, the best-performing 5hmC model can predict patient survival at a much higher accuracy (c-index = 74%) when compared to conventional prognostic factor IDH1 (c-index = 57%), capturing the molecular characteristics of tumors that are independent of IDH1 mutation status and gene expression-based molecular subtypes.ConclusionsThe 5hmC-based prognostic model could offer a robust tool to predict survival in patients with grade 4 gliomas, potentially outperforming existing prognostic factors such as IDH1 mutations. The crosstalk between 5hmC and gene expression revealed another layer of complexity underlying the molecular heterogeneity in grade 4 gliomas, offering opportunities for identifying novel therapeutic targets.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.