Abstract

BackgroundResearch to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 was identified as a source of Pgt resistance. This accession exhibits resistance to multiple Ug99-lineage and North American Pgt races at seedling and adult-plant stages. A recombinant inbred population was developed by crossing the susceptible line LMPG-6 with a single plant selection of PI 362698. A genetic map was constructed using the Illumina iSelect 90 K wheat assay and the markers csLv34, NB-LRR3, and wMAS000003 and quantitative trait locus (QTL) analysis was performed.ResultsQTL analysis identified five significant QTLs (α = 0.05) on chromosomes 2B, 3B, 6A, 6D, and 7A associated with wheat stem rust resistance. The QTL on chromosome 3B was identified using both field data from Kenya (Pgt Ug99-lineage races) and seedling data from Pgt race MCCF. This QTL potentially corresponds to Sr12 or a new allele of Sr12. The multi-pathogen resistance gene Sr57 located on chromosome 7D is present in PI 362698 according to the diagnostic markers csLv34 and wMAS000003, however a significant QTL was not detected at this locus. The QTLs on chromosomes 2B, 6A, and 6D were identified during seedling trials and are thought to correspond to Sr16, Sr8a, and Sr5, respectively. The QTL identified on chromosome 7A was detected using MCCF seedling data and may be Sr15 or a potentially novel allele of recently detected Ug99 resistance QTLs.ConclusionsThe combination of resistance QTLs found in PI 362698 is like the resistance gene combination present in the broadly resistant cultivar Thatcher. As such, PI 362698 may not be a landrace as previously thought. PI 362698 has been crossed with North Dakota wheat germplasm for future breeding efforts. Additional work is needed to fully understand why the combination of genes present in PI 362698 and ‘Thatcher’ provide such durable resistance.

Highlights

  • Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa

  • Phenotypic evaluation PI 362698 was resistant to the races tested at seedling stages and was immune to many of the North American (NA) Pgt races (Table 1)

  • The number of Linkage mapping The STS marker csLv34, KASP markers NB-LRR3 and wMAS000003, and 6863 SNP markers from the 90 K Infinium iSelect wheat assay were used for mapping

Read more

Summary

Introduction

Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. The Montenegrin spring wheat landrace PI 362698 was identified as a source of Pgt resistance. This accession exhibits resistance to multiple Ug99-lineage and North American Pgt races at seedling and adult-plant stages. Selection pressure imposed by deployed resistance genes has resulted in Ug99-lineage races that are virulent on Sr24, Sr36, Sr9h, and SrTmp [3, 11,12,13,14]. These cultivars led to selection against Ug99-lineage races and a predominance of the race TKTTF in these regions, which lead to major epidemics in 2013 and 2014 [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call