Abstract

Immune checkpoint blockades are actively adopted in diverse cancer types including metastatic melanoma and lung cancer. Despite of durable response in 20–30% of patients, we still lack molecular markers that could predict the patient responses reliably before treatment. Here we present a composite model for predicting anti-PD-1 response based on tumor mutation burden (TMB) and transcriptome sequencing data of 85 lung adenocarcinoma (LUAD) patients who received anti-PD-(L)1 treatment. We found that TMB was a good predictor (AUC = 0.81) for PD-L1 negative patients (n = 20). For PD-L1 positive patients (n = 65), we built an ensemble model of 100 XGBoost learning machines where gene expression, gene set activities and cell type composition were used as input features. The transcriptome-based models showed excellent accuracy (AUC > 0.9) and highlighted the contribution of T cell activities. Importantly, nonresponder patients with high prediction score turned out to have high CTLA4 expression, which suggested that neoadjuvant CTLA4 combination therapy might be effective for these patients. Our data and analysis results provide valuable insights into developing biomarkers and strategies for treating LUAD patients using immune checkpoint inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.